Learning and Logic

April 15, 2015

Aims

This lecture will introduce you to theoretical and applied aspects of representing hypotheses for machine learning in first-order logic. Following it you should be able to:

• outline the key differences between propositional and first-order learning
• describe the problem of learning relations and some applications
• outline the problem of induction in terms of inverse deduction
• describe inverse resolution in propositional and first-order logic
• describe least general generalisation and θ-subsumption
• reproduce the basic FOIL algorithm and its use of information gain

[Recommended reading: Mitchell, Chapter 10]
[Recommended exercises: 10.5 – 10.7 (10.8)]
Relevant programs

Progol
http://www.doc.ic.ac.uk/~shm/progol.html

Aleph
http://web.comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph

FOIL
http://www.rulequest.com/Personal/

iProlog
http://www.cse.unsw.edu.au/~claude/research/software/

Golem
http://www.doc.ic.ac.uk/~shm/golem.html

See also:
http://www-ai.ijs.si/~ilpnet2/systems/
Representation in Propositional Logic

Propositional variables: P, Q, R, \ldots
Negation: $\neg S, \neg T, \ldots$
Logical connectives: $\land, \lor, \leftarrow, \leftrightarrow$
Well-formed formulae: $P \lor Q$, $(\neg R \land S) \rightarrow T$, etc.

Inference rules:

- **modus ponens** Given B and $A \leftarrow B$ infer A
- **modus tollens** Given $\neg A$ and $A \leftarrow B$ infer $\neg B$

Enable **sound** or **valid** inference.
Meaning in Propositional Logic

Propositional variables stand for declarative sentences (properties):

P the paper is red

Q the solution is acid

Potentially useful inferences:

$P \rightarrow Q$ If the paper is red then the solution is acid

Meaning of such formulae can be understood with a **truth table**:

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>$P \rightarrow Q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
</tbody>
</table>
Representation in First-Order Predicate Logic

We have a richer language for developing formulae:
constant symbols: Fred, Jane, Copper, Manganese, ...
function symbols: Cons, Succ, ...
variable symbols: x, y, z, ...
predicate symbols: Parent, Likes, Binds, ...

We still have:
Negation: \(\neg \text{Likes(Bob, Footy)} \), ...
Logical connectives: \(\land, \lor, \iff \)

but we also have quantification:
\(\forall x \text{Likes}(x, Fred) \), \(\exists y \text{Binds}(Copper, y) \)

And we still have well-formed formulae and inference rules ...
Meaning in First-Order Logic

Same basic idea as propositional logic, but more complicated.
Give meaning to first-order logic formulae by interpretation with respect to a given domain D by associating

- each constant symbol with some element of D
- each n-ary function symbol with some function from D^n to D
- each n-ary predicate symbol with some relation in D^n

For variables, essentially consider associating all or some domain elements in the formula, depending on quantification.

Interpretation is association of a formula with a truth-valued statement about the domain.
Learning First Order Rules

Why do that?

- trees, rules so far have allowed only comparisons of a variable with a constant value (e.g., sky = sunny, temperature < 45)
- these are propositional representations – have same expressive power as propositional logic
- to express more powerful concepts, say involving relationships between example objects, propositional representations are insufficient, and we need a more expressive representation

E.g., to classify X depending on its relation R to another object Y
Learning First Order Rules

How to learn concepts about nodes in a graph?

• Cannot use fixed set of attributes where each attribute describes a linked node (how many attributes?)

• Cannot use fixed set of attributes to learn *connectivity* concepts...
Learning First Order Rules

BUT in first order logic sets of rules can represent graph concepts such as:

\[\text{Ancestor}(x, y) \leftarrow \text{Parent}(x, y) \]
\[\text{Ancestor}(x, y) \leftarrow \text{Parent}(x, z) \land \text{Ancestor}(z, y) \]

The declarative programming language **PROLOG** is based on the Horn clause subset of first-order logic – a form of *Logic Programming*:

- **PROLOG** is a general purpose programming language: *logic programs* are sets of first order rules
- “pure” **PROLOG** is *Turing complete*, i.e., can simulate a Universal Turing machine (every computable function)
- learning in this representation is called *Inductive Logic Programming (ILP)*
Prolog definitions for relational concepts

Some **Prolog** syntax:

- all predicate and constant names begin with a lower-case letter
 - predicate (relation) names, e.g. uncle, adjacent
 - constant names, e.g. fred, banana

- all variable names begin with an upper-case letter
 - X, Y, Head, Tail

- a predicate is specified by its *name* and *arity* (number of arguments), e.g.
 - male/1 means the predicate “male” with one argument
 - sister/2 means the predicate “sister of” with two arguments
Prolog definitions for relational concepts

- Predicates are defined by sets of clauses, each with that predicate in its head.
 - E.g. the recursive definition of ancestor/2

\[
\begin{align*}
\text{ancestor}(X,Y) & : - \ \text{parent}(X,Y). \\
\text{ancestor}(X,Y) & : - \ \text{parent}(X,Z), \ \text{ancestor}(Z,Y).
\end{align*}
\]

- Clause head, e.g. ancestor/2, is to the left of the ':-'

- Clause body, e.g. parent(X,Z), ancestor(Z,Y), is to the right of the ':-'
Prolog definitions for relational concepts

- each instance of a relation name in a clause is called a literal
- a definite clause has exactly one literal in the clause head
- a Horn clause has at most one literal in the clause head
- Prolog programs are sets of Horn clauses
- Prolog is a form of logic programming (many approaches)
- related to SQL, functional programming, ...
Induction as Inverted Deduction

Induction is, in fact, the inverse operation of deduction, and cannot be conceived to exist without the corresponding operation, so that the question of relative importance cannot arise. Who thinks of asking whether addition or subtraction is the more important process in arithmetic? But at the same time much difference in difficulty may exist between a direct and inverse operation; . . . it must be allowed that inductive investigations are of a far higher degree of difficulty and complexity than any questions of deduction. . . . (W.S. Jevons, 1874)
Induction as Inverted Deduction

Induction as Inverted Deduction

[From lecture on Concept Learning:] Induction is finding \(h \) such that

\[
(\forall \langle x_i, f(x_i) \rangle \in D) \; B \land h \land x_i \vdash f(x_i)
\]

where

- \(x_i \) is \(i \)th training instance
- \(f(x_i) \) is the target function value for \(x_i \)
- \(B \) is other background knowledge

So let’s design inductive algorithm by inverting operators for automated deduction!
Induction as Inverted Deduction

“pairs of people, \langle u, v \rangle such that child of u is v,”

\[
f(x_i) : \quad \text{Child}(Bob, Sharon)
\]

\[
x_i : \quad \text{Male}(Bob), \text{Female}(Sharon), \text{Father}(Sharon, Bob)
\]

\[
B : \quad \text{Parent}(u, v) \leftarrow \text{Father}(u, v)
\]

What satisfies \((\forall \langle x_i, f(x_i) \rangle \in D) B \wedge h \wedge x_i \vdash f(x_i)\)?

\[
h_1 : \quad \text{Child}(u, v) \leftarrow \text{Father}(v, u)
\]

\[
h_2 : \quad \text{Child}(u, v) \leftarrow \text{Parent}(v, u)
\]
Induction as Inverted Deduction

We have mechanical *deductive* operators $F(A, B) = C$, where $A \land B \vdash C$

need *inductive* operators

$$O(B, D) = h \text{ where } (\forall \langle x_i, f(x_i) \rangle \in D) \ (B \land h \land x_i) \vdash f(x_i)$$
Induction as Inverted Deduction

Positives:

- Subsumes earlier idea of finding h that “fits” training data
- Domain theory B helps define meaning of “fit” the data

$$B \land h \land x_i \vdash f(x_i)$$

- Suggests algorithms that search H guided by B
Induction as Inverted Deduction

Negatives:

• Doesn’t allow for noisy data. Consider

\[(\forall \langle x_i, f(x_i) \rangle \in D) \ (B \land h \land x_i) \vdash f(x_i)\]

• First order logic gives a huge hypothesis space \(H\)

 \(\rightarrow\) overfitting...

 \(\rightarrow\) intractability of calculating all acceptable \(h\)'s
Deduction: Resolution Rule

\[\begin{align*}
P \lor L \\
\neg L \lor R \\
P \lor R
\end{align*} \]

1. Given initial clauses \(C_1 \) and \(C_2 \), find a literal \(L \) from clause \(C_1 \) such that \(\neg L \) occurs in clause \(C_2 \).

2. Form the resolvent \(C \) by including all literals from \(C_1 \) and \(C_2 \), except for \(L \) and \(\neg L \). More precisely, the set of literals occurring in the conclusion \(C \) is

\[C = (C_1 - \{L\}) \cup (C_2 - \{\neg L\}) \]

where \(\cup \) denotes set union, and “−” denotes set difference.
Inverting Resolution

\[C_1: \text{PassExam} \lor \neg\text{KnowMaterial} \]

\[C_2: \text{KnowMaterial} \lor \neg\text{Study} \]

\[C: \text{PassExam} \lor \neg\text{Study} \]
Inverting Resolution (Propositional)

1. Given initial clauses C_1 and C, find a literal L that occurs in clause C_1, but not in clause C.

2. Form the second clause C_2 by including the following literals

 $$C_2 = (C - (C_1 - \{L\})) \cup \{\neg L\}$$

3. Given initial clauses C_2 and C, find a literal $\neg L$ that occurs in clause C_2, but not in clause C.

4. Form the second clause C_1 by including the following literals

 $$C_1 = (C - (C_2 - \{\neg L\})) \cup \{L\}$$
Duce operators

<table>
<thead>
<tr>
<th>Op</th>
<th>Same Head</th>
<th>Different Head</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>Identification</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(p \leftarrow A, B)</td>
<td>(q \leftarrow B)</td>
</tr>
<tr>
<td></td>
<td>(p \leftarrow A, q)</td>
<td>(p \leftarrow A, q)</td>
</tr>
<tr>
<td>W</td>
<td>Absorption</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(p \leftarrow A, B)</td>
<td>(p \leftarrow q, B)</td>
</tr>
<tr>
<td></td>
<td>(q \leftarrow A)</td>
<td>(q \leftarrow A)</td>
</tr>
<tr>
<td></td>
<td>Intra-construction</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(p \leftarrow A, B_1)</td>
<td>(w \leftarrow B_1)</td>
</tr>
<tr>
<td></td>
<td>(p \leftarrow A, B_2)</td>
<td>(w \leftarrow B_2)</td>
</tr>
<tr>
<td></td>
<td>(p \leftarrow A, w)</td>
<td>(w \leftarrow A)</td>
</tr>
<tr>
<td>W</td>
<td>Inter-construction</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(p_1 \leftarrow A, B_1)</td>
<td>(p_1 \leftarrow w, B_1)</td>
</tr>
<tr>
<td></td>
<td>(p_2 \leftarrow A, B_2)</td>
<td>(p_2 \leftarrow w, B_2)</td>
</tr>
</tbody>
</table>

Each operator is read as: pre-conditions on left, post-conditions on right.
First order resolution

First order resolution:

1. Find a literal \(L_1 \) from clause \(C_1 \), literal \(L_2 \) from clause \(C_2 \), and substitution \(\theta \) such that \(L_1 \theta = \neg L_2 \theta \)

2. Form the resolvent \(C \) by including all literals from \(C_1 \theta \) and \(C_2 \theta \), except for \(L_1 \theta \) and \(\neg L_2 \theta \). More precisely, the set of literals occurring in the conclusion \(C \) is

\[
C = (C_1 - \{L_1\}) \theta \cup (C_2 - \{L_2\}) \theta
\]
Inverting First order resolution

Factor θ

$$C = (C_1 - \{L_1\})\theta_1 \cup (C_2 - \{L_2\})\theta_2$$

C_2 should have no common literals with C_1

$$C - (C_1 - \{L_1\})\theta_1 = (C_2 - \{L_2\})\theta_2$$

By definition of resolution $L_2 = \neg L_1 \theta_1 \theta_2^{-1}$

$$C_2 = (C - (C_1 - \{L_1\})\theta_1)\theta_2^{-1} \cup \{\neg L_1 \theta_1 \theta_2^{-1}\}$$
Cigol

\[
\text{Father (Tom, Bob)} \quad \text{GrandChild}(y,x) \lor \neg \text{Father}(x,z) \lor \neg \text{Father}(z,y)
\]

\[
\text{Father (Shannon, Tom)} \quad \text{GrandChild}(Bob,x) \lor \neg \text{Father}(x,\text{Tom})
\]

\[
\text{GrandChild}(\text{Bob, Shannon}) \quad \{\text{Bob/y, Tom/z}\}
\]

\[
\{\text{Shannon/x}\}
\]
Subsumption and Generality

θ-subsumption C θ-subsumes D if there is a substitution θ such that $C\theta \subseteq D$.

C is at least as general as D ($C \leq D$) if C θ-subsumes D.

If C θ-subsumes D then C logically entails D (but not the reverse).

θ-subsumption is a partial order, thus generates a lattice in which any two clauses have a least-upper-bound and a greatest-lower-bound.

The least general generalisation (LGG) of two clauses is their least-upper-bound in the θ-subsumption lattice.
LGG

- LGG of clauses is based on LGGs of literals (atoms)
- LGG of literals is based on LGGs of terms, i.e. constants and variables
- LGG of two constants is a variable, i.e. a minimal generalisation
LGG of atoms

Two atoms are **compatible** if they have the same predicate symbol and arity (number of arguments)

- $\text{lgg}(a, b)$ for different constants or functions with different function symbols is the variable X
- $\text{lgg}(f(a_1, \ldots, a_n), f(b_1, \ldots, b_n))$ is $f(\text{lgg}(a_1, b_1), \ldots, \text{lgg}(a_n, b_n))$
- $\text{lgg}(Y_1, Y_2)$ for variables Y_1, Y_2 is the variable X

Note:

1. must ensure that the **same** variable appears everywhere its bound arguments do in the atom
2. must ensure introduced variables appear **nowhere** in the original atoms
LGG of clauses

The LGG of two clauses C1 and C2 is formed by taking the LGGs of each literal in C1 with every literal in C2.

Clauses form a subsumption lattice, with LGG as least upper bound and MGI (most general instance) as lower bound.

Lifts the concept learning lattice to a first-order logic representation.

Leads to relative LGGs with respect to background knowledge.
Example from Quinlan (1991)

Given two ground instances of target predicate Q/k, $Q(c_1, c_2, \ldots, c_k)$ and $Q(d_1, d_2, \ldots, d_k)$, plus other logical relations representing background knowledge that may be relevant to the target concept, the relative least general generalisation (rlgg) of these two instances is:

$$Q(lgg(c_1, d_1), lgg(c_2, d_2), \ldots) \leftarrow \bigwedge \{lgg(r_1, r_2)\}$$

for every pair r_1, r_2 of ground instances from each relation in the background knowledge.
This figure depicts two scenes s_1 and s_2 and may be described by the predicates Scene/1, On/3, Left-of/2, Circle/1, Square/1 and Triangle/1.
RLGG Example

<table>
<thead>
<tr>
<th>Predicate</th>
<th>Ground Instances (tuples)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scene</td>
<td>{< s_1 >, < s_2 >}</td>
</tr>
<tr>
<td>On</td>
<td>{< s_1, a, b >, < s_2, f, e >}</td>
</tr>
<tr>
<td>Left-of</td>
<td>{< s_1, b, c >, < s_2, d, e >}</td>
</tr>
<tr>
<td>Circle</td>
<td>{< a >, < f >}</td>
</tr>
<tr>
<td>Square</td>
<td>{< b >, < d >}</td>
</tr>
<tr>
<td>Triangle</td>
<td>{< c >, < e >}</td>
</tr>
</tbody>
</table>
To compute RLGG of the two scenes generate the clause:

\[
\text{Scene}(\text{lgg}(s_1, s_2)) \leftarrow \\
\text{On}(\text{lgg}(s_1, s_2), \text{lgg}(a, f), \text{lgg}(b, e)), \\
\text{Left-of}(\text{lgg}(s_1, s_2), \text{lgg}(b, d), \text{lgg}(c, e)), \\
\text{Circle}(\text{lgg}(a, f)), \\
\text{Square}(\text{lgg}(b, d)), \\
\text{Triangle}(\text{lgg}(c, e))
\]
RLGG Example

Compute LGGs to introduce variables into the final clause:

\[
\text{Scene}(A) \leftarrow \\
\quad \text{On}(A, B, C), \\
\quad \text{Left-of}(A, D, E), \\
\quad \text{Circle}(B), \\
\quad \text{Square}(D), \\
\quad \text{Triangle}(E)
\]
Refinement Operators

Propositional subsumption — clauses are sets of literals.

E.g., \(\text{flies} \leftarrow \text{bird}, \text{normal} \) can be represented as the set \(\{ \text{flies}, \neg \text{bird}, \neg \text{normal} \} \).

In a propositional representation, one clause is more general than the other if it contains a subset of its literals.

For first-order atoms, one atom \(a_1 \) is more general than another \(a_2 \) if there is a substitution \(\theta \) such that \(a_1 \theta \subseteq a_2 \).

A refinement operator takes one atom (clause) and produces another such that the first atom subsumes the second.

For first-order atoms, ideal refinement operators can be found (see tutorial notes).
From Propositional to First-order Representations

<table>
<thead>
<tr>
<th>Day</th>
<th>Outlook</th>
<th>Temperature</th>
<th>Humidity</th>
<th>Wind</th>
<th>PlayTennis</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>Sunny</td>
<td>Hot</td>
<td>High</td>
<td>Weak</td>
<td>No</td>
</tr>
<tr>
<td>D2</td>
<td>Sunny</td>
<td>Hot</td>
<td>High</td>
<td>Strong</td>
<td>No</td>
</tr>
<tr>
<td>D3</td>
<td>Overcast</td>
<td>Hot</td>
<td>High</td>
<td>Weak</td>
<td>Yes</td>
</tr>
<tr>
<td>D4</td>
<td>Rain</td>
<td>Mild</td>
<td>High</td>
<td>Weak</td>
<td>Yes</td>
</tr>
<tr>
<td>D5</td>
<td>Rain</td>
<td>Cool</td>
<td>Normal</td>
<td>Weak</td>
<td>Yes</td>
</tr>
<tr>
<td>D6</td>
<td>Rain</td>
<td>Cool</td>
<td>Normal</td>
<td>Strong</td>
<td>No</td>
</tr>
<tr>
<td>D7</td>
<td>Overcast</td>
<td>Cool</td>
<td>Normal</td>
<td>Strong</td>
<td>Yes</td>
</tr>
<tr>
<td>D8</td>
<td>Sunny</td>
<td>Mild</td>
<td>High</td>
<td>Weak</td>
<td>No</td>
</tr>
<tr>
<td>D9</td>
<td>Sunny</td>
<td>Cool</td>
<td>Normal</td>
<td>Weak</td>
<td>Yes</td>
</tr>
<tr>
<td>D10</td>
<td>Rain</td>
<td>Mild</td>
<td>Normal</td>
<td>Weak</td>
<td>Yes</td>
</tr>
<tr>
<td>D11</td>
<td>Sunny</td>
<td>Mild</td>
<td>Normal</td>
<td>Strong</td>
<td>Yes</td>
</tr>
<tr>
<td>D12</td>
<td>Overcast</td>
<td>Mild</td>
<td>High</td>
<td>Strong</td>
<td>Yes</td>
</tr>
<tr>
<td>D13</td>
<td>Overcast</td>
<td>Hot</td>
<td>Normal</td>
<td>Weak</td>
<td>Yes</td>
</tr>
<tr>
<td>D14</td>
<td>Rain</td>
<td>Mild</td>
<td>High</td>
<td>Strong</td>
<td>No</td>
</tr>
</tbody>
</table>
From Propositional to First-order Representations

Use a single relation (the \textit{target} relation):

\texttt{play_tennis(Day,Outlook,Temperature,Humidity,Wind,PlayTennis)}.

Training data:

\texttt{play_tennis(d1,sunny,hot,high,weak,no)}.
\ldots

Hypothesis (complete and correct for examples):

\texttt{play_tennis(Day,overcast,Temperature,Humidity,Wind,yes)}.
\texttt{play_tennis(Day,rain,Temperature,Humidity,weak,yes)}.
\texttt{play_tennis(Day,sunny,Temperature,normal,Wind,yes)}.
From Propositional to First-order Representations

Multiple relations define the target w.r.t. background knowledge):

\texttt{play_tennis(Day,\text{PlayTennis}).}

Training data:

\texttt{play_tennis(d1,\text{no}).}

\texttt{outlook(d1,\text{sunny})}\quad \texttt{temperature(d1,\text{hot}).}
\texttt{humidity(d1,\text{high})}\quad \texttt{wind(d1,\text{weak}).}

\ldots

Hypothesis (complete and correct for examples):

\texttt{play_tennis(Day,yes) :- outlook(Day,\text{overcast}).}
\texttt{play_tennis(Day,yes) :- outlook(Day,\text{rain}), wind(Day,\text{weak}).}
\texttt{play_tennis(Day,yes) :- outlook(Day,\text{sunny}), humidity(Day,\text{normal}).}
Michalski’s Trains

Eastbound trains

Westbound trains
Michalski’s Trains: background knowledge

Declare types:

\text{train(east1). train(east2). train(east3). ... train(west6). train(west7). train(west8). ...}

\text{shape(hexagon). shape(rectangle). shape(triangle). ...}

...
Michalski’s Trains: background knowledge

Define all the trains:

% eastbound train 1
has_car(east1,car_11). long(car_11).
wheels(car_11,2). load(car_11,rectangle,3).

has_car(east1,car_12). short(car_12).
wheels(car_12,2). shape(car_12,rectangle).
...

% eastbound train 2
has_car(east2,car_21). short(car_21).
open_car(car_21). load(car_21,triangle,1).
...
Michalski's Trains: foreground examples

Positive examples:
- eastbound(east1).
- eastbound(east2).
- eastbound(east3).
- eastbound(east4).
- eastbound(east5).

Negative examples:
- eastbound(west6).
- eastbound(west7).
- eastbound(west8).
- eastbound(west9).
- eastbound(west10).

Logically, the negative examples are instances (here the trains west1, west2, etc.) for which the target predicate (here eastbound/1) is false.
Michalski’s Trains: hypothesis

Learned using Aleph in SWI Prolog:

[clauses constructed] [70]
[search time] [0.01]
[best clause]
eastbound(A) :-
 has_car(A, B), short(B), closed(B).
[pos cover = 5 neg cover = 0] [pos-neg] [5]
true.

?-
Learning First Order Rules

• to learn logic programs we can adopt propositional rule learning methods
• the target relation is clause head, e.g. \texttt{ancestor}/2
 – think of this as the \textit{consequent}
• the clause body is constructed using predicates from \textit{background knowledge}
 – think of this as the \textit{antecedent}
• unlike propositional rules first order rules can have
 – variables
 – tests on more than one variable at a time
 – recursion
• learning is set up as a search through the hypothesis space of first order rules
Example: First Order Rule for Classifying Web Pages

[Slattery, 1997]

course(A) ←
 has-word(A, instructor),
 not has-word(A, good),
 link-from(A, B),
 has-word(B, assign),
 not link-from(B, C)

Train: 31/31, Test: 31/34

Can learn \textit{graph-type} representations.
FOIL(\text{Target_predicate}, \text{Predicates}, \text{Examples})
Pos := \text{positive Examples}
Neg := \text{negative Examples}
while Pos, do
 // Learn a NewRule
 NewRule := \text{most general rule possible}
 NewRuleNeg := Neg
 while NewRuleNeg, do
 // Add a new literal to specialize NewRule
 Candidate_literals := \text{generate candidates}
 Best_literal := \text{argmax}_{L \in \text{Candidate_literals}} \text{Foil_Gain}(L, \text{NewRule})
 add Best_literal to NewRule preconditions
 NewRuleNeg := \text{subset of NewRuleNeg that satisfies NewRule preconditions}
 Learned_rules := Learned_rules + NewRule
Pos := Pos \setminus \{\text{members of Pos covered by NewRule}\}
Return Learned_rules
Specializing Rules in FOIL

Learning rule: $P(x_1, x_2, \ldots, x_k) \leftarrow L_1 \ldots L_n$ Candidate specializations add a new literal of form:

- $Q(v_1, \ldots, v_r)$, where at least one of the v_i in the created literal must already exist as a variable in the rule.
- $Equal(x_j, x_k)$, where x_j and x_k are variables already present in the rule.
- The negation of either of the above forms of literals
Completeness and Consistency (Correctness)

\mathcal{H}: complete, consistent

\mathcal{H}: incomplete, consistent
Completeness and Consistency (Correctness)

\(\mathcal{H} \): complete, inconsistent

\(\text{covers}(\mathcal{H}, \mathcal{E}) \)

\(\mathcal{E}^+ \)

\(\mathcal{E}^- \)

\(\mathcal{H} \): incomplete, inconsistent

\(\text{covers}(\mathcal{H}, \mathcal{E}) \)

\(\mathcal{E}^+ \)

\(\mathcal{E}^- \)
Variable Bindings

• A substitution replaces variables by terms
• Substitution θ applied to literal L is written $L\theta$
• If $\theta = \{x/3, y/z\}$ and $L = P(x, y)$ then $L\theta = P(3, z)$

FOIL bindings are substitutions mapping each variable to a constant:

$$\text{GrandDaughter}(x, y) \leftarrow$$

With 4 constants in our examples we have 16 possible bindings:

$$\{x/Victor, y/Sharon\}, \{x/Victor, y/Bob\}, \ldots$$

With 1 positive example of GrandDaughter, other 15 bindings are negative:

$$\text{GrandDaughter}(Victor, Sharon)$$
Information Gain in FOIL

\[\text{Foil Gain}(L, R) \equiv t \left(\log_2 \frac{p_1}{p_1 + n_1} - \log_2 \frac{p_0}{p_0 + n_0} \right) \]

Where

- \(L \) is the candidate literal to add to rule \(R \)
- \(p_0 \) = number of positive bindings of \(R \)
- \(n_0 \) = number of negative bindings of \(R \)
- \(p_1 \) = number of positive bindings of \(R + L \)
- \(n_1 \) = number of negative bindings of \(R + L \)
- \(t \) is the number of positive bindings of \(R \) also covered by \(R + L \)
Information Gain in FOIL

Note

- $- \log_2 \frac{p_0}{p_0+n_0}$ is minimum number of bits to identify an arbitrary positive binding among the bindings of R

- $- \log_2 \frac{p_1}{p_1+n_1}$ is minimum number of bits to identify an arbitrary positive binding among the bindings of $R + L$

- $Foil_Gain(L, R)$ measures the reduction due to L in the total number of bits needed to encode the classification of all positive bindings of R
Learning with FOIL

Target Predicate: ancestor

Background Family Tree

Fred - Mary
Alice - Tom Bob - Cindy
John - Barb Ann - Frank
Carol Ted

COMP9417: April 15, 2015 Learning and Logic: Slide 55
Completeness and Correctness

New clause: ancestor(X,Y) :-.
 Best antecedent: parent(X,Y) Gain: 31.02
Learned clause: ancestor(X,Y) :- parent(X,Y).

New clause: ancestor(X,Y) :-.
 Best antecedent: parent(Z,Y) Gain: 13.65
 Best antecedent: ancestor(X,Z) Gain: 27.86
Learned clause: ancestor(X,Y) :- parent(Z,Y),
 ancestor(X,Z).

Definition: ancestor(X,Y) :- parent(X,Y).
ancestor(X,Y) :- parent(Z,Y),
 ancestor(X,Z).
FOIL as a propositional learner

- target predicate is usual form of class value and attribute values
 - \(Class_1(V_1, V_2, \ldots, V_m), Class_2(V_1, V_2, \ldots, V_m), \ldots \)
- literals restricted to those in typical propositional learners
 - \(V_i = const, V_i > num, V_i \leq num \)
- plus extended set
 - \(V_i = V_j, V_i \geq V_j \)
- FOIL results vs C4.5
 - accuracy competitive, especially with extended literal set
 - FOIL required longer computation
 - C4.5 more compact, i.e. better pruning
FOIL learns **Prolog** programs from examples

- from I. Bratko’s book "**Prolog** Programming for Artificial Intelligence"
- introductory list programming problems
- training sets by randomly sampling from universe of 3 and 4 element lists
- FOIL learned most predicates completely and correctly
 - some predicates learned in restricted
 - some learned in more complex form than in book
 - most learned in few seconds, some much longer
FOIL learns Prolog programs from examples

- `member(E,L)`
 E is an element of list L

- `conc(L1,L2,L3)`
 appending L1 to L2 gives list L3

- `member1(E,L)`
 as for `member` with `conc` available

- `last(E,L)`
 E is the last element of L

- `last1(E,L)`
 ditto, but without using `conc`

- `del(E,L1,L2)`
 deleting an occurrence of E from L1 gives L2

- `member2(E,L)`
 as for `member` with `del` available

- `insert(E,L1,L2)`
 inserting E somewhere in L1 gives L2

- `sublist(L1,L2)`
 L1 is a sublist of L2

- `permutation(L1,L2)`
 L2 is a permutation of list L1

- `even/oddlength(L)`
 L has an even/odd number of elements (both relations to be defined)

- `reverse(L1,L2)`
 L2 is the reverse of list L1

- `palindrome(L)`
 list L is a palindrome

- `palindrome1(L)`
 as above, but not using `reverse`

- `shift(L1,L2)`
 rotating elements of L1 to the left gives L2

- `translate(L1,L2)`
 L2 is the results of translating L1 using an element-to-element mapping

- `subset(S1,S2)`
 S2 is a subset of set S1

- `divideList(L1,L2,L3)`
 L2 contains the odd-numbered elements of L1,
 L3 contains the even-numbered elements of L1
Determinate Literals

- adding a new literal $Q(X, Y)$ where Y is the unique value for X
- this will result in zero gain!
- FOIL gives a small positive gain to literals introducing a new variable
- BUT there may be many such literals
Determinate Literals

Refining clause $A \leftarrow L_1, L_2, \ldots, L_{m-1}$

- a new literal L_m is *determinate* if
 - L_m introduces new variable(s)
 - there is exactly one extension of each positive tuple that satisfies L_m
 - there is no more than one extension of each negative tuple that satisfies L_m

So L_m preserves all positive tuples and does not increase the set of bindings

At each step in specializing the current clause, unless FOIL finds a literal with close to the maximum possible gain, it adds all determinate literals to the clause, and iterates. This “lookahead” helps to overcome greedy search myopia without blowing up the search space. The clause is post-pruned to remove redundant literals.
Identifying document components

- Problem: learn rules to locate logical components of documents
- documents have varying numbers of components
- relationships (e.g. alignment) between pairs of components
- inherently relational task
- target relations to identify sender, receiver, date, reference, logo.
Identifying document components

- background knowledge
 - 20 single page documents
 - 244 components
 - 57 relations specifying
 * component type (text or picture)
 * position on page
 * alignment with other components

- test set error from 0% to 4%
Identifying document components

x2 (sender)

x4

x3 (receiver)

x5 (logo)

x7 (reference)

x6 (date)

x8

x9

x10

x11
Text applications of first-order logic in learning

Q: when to use first-order logic in machine learning?

A: when relations are important.
Representation for text

Example: text categorization, i.e. assign a document to one of a finite set of categories.

Propositional learners:

- use a “bag-of-words”, often with frequency-based measures
- disregards word order, e.g. equivalence of

 * That’s true, I did not do it
 * That’s not true, I did do it

First-order learners: word-order predicates in background knowledge

\[
\text{has_word}(\text{Doc}, \text{Word}, \text{Pos})
\]

\[
\text{Pos1} < \text{Pos2}
\]
Learning information extraction rules

What is information extraction? Fill a pre-defined template from a given text.

Partial approach to finding meaning of documents.

Given: examples of texts and filled templates
Learn: rules for filling template slots based on text
SOFTWARE PROGRAMMER

Position available for Software Programmer experienced in generating software for PC-Based Voice Mail systems. Experienced in C Programming. Must be familiar with communicating with and controlling voice cards; preferable Dialogic, however, experience with others such as Rhetorix and Natural Microsystems is okay. Prefer 5 years or more experience with PC Based Voice Mail, but will consider as little as 2 years. Need to find a Senior level person who can come on board and pick up code with very little training. Present Operating System is DOS. May go to OS-2 or UNIX in future.

Please reply to:
Kim Anderson
AdNET
(901) 458-2888 fax
kimander@memphisonline.com
SOFTWARE PROGRAMMER

Position available for Software Programmer experienced in generating software for PC-Based Voice Mail systems. Experienced in C Programming. Must be familiar with communicating with and controlling voice cards; preferable Dialogic, however, experience with others such as Rhetorix and Natural Microsystems is okay. Prefer 5 years or more experience with PC Based Voice Mail, but will consider as little as 2 years. Need to find a Senior level person who can come on board and pick up code with very little training. Present Operating System is DOS. May go to OS-2 or UNIX in future.

Please reply to:
Kim Anderson
AdNET
(901) 458-2888 fax
kimander@memphisonline.com
Example filled template

id: 56nigp$mrs@bilbo.reference.com
title: SOFTWARE PROGRAMMER
salary:
company:
recruiter:
state: TN
city:
country: US
language: C
platform: PC | DOS | OS-2 | UNIX
application:
area: Voice Mail
req_years_experience: 2
desired_years_experience: 5
req_degree:
desired_degree:
post_date: 17 Nov 1996
A learning method for Information Extraction

Rapier (Califf and Mooney, 2002) is an ILP-based approach which learns information extraction rules based on regular expression-type patterns

Pre-Filler Patterns: what must match \textit{before} filler

Filler Patterns: what the \textit{filler} pattern is

Post-Filler Patterns: what must match \textit{after} filler

Algorithm uses a combined bottom-up (specific-to-general) and top-down (general-to-specific) approach to generalise rules.

syntactic analysis: Brill part-of-speech tagger

semantic analysis: WordNet (Miller, 1993)
A learning method for Information Extraction

Example rules from text to fill the city slot in a job template:

“... located in **Atlanta**, Georgia.”
“... offices in **Kansas City**, Missouri.”

<table>
<thead>
<tr>
<th>Pre-Filler Pattern</th>
<th>Filler Pattern</th>
<th>Post-Filler Pattern</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) word: <code>in</code></td>
<td>1) list: max length: 2</td>
<td>1) word: <code>,</code></td>
</tr>
<tr>
<td>tag: <code>in</code></td>
<td>tag: <code>nnp</code></td>
<td>tag: <code>,</code></td>
</tr>
</tbody>
</table>

where `nnp` denotes a proper noun (syntax) and `state` is a general label from the WordNet ontology (semantics).
Progol

Progol: Reduce combinatorial explosion by generating most specific acceptable h as lower bound on search space

1. User specifies H by stating predicates, functions, and forms of arguments allowed for each

2. **Progol** uses sequential covering algorithm.
 For each $\langle x_i, f(x_i) \rangle$
 - Find most specific hypothesis h_i s.t. $B \land h_i \land x_i \vdash f(x_i)$
 - actually, considers only k-step entailment

3. Conduct general-to-specific search bounded by specific hypothesis h_i, choosing hypothesis with minimum description length
Protein structure

Positive(12)
Negative(12)

2mhr - Four-helical up-and-down bundle

E:1[57-58] E:2[96-98]

1omd - EF-Hand

2mhr - Four-helical up-and-down bundle
fold('Four-helical up-and-down bundle', P) :-
 helix(P,H1),
 length(H1,hi),
 position(P,H1,Pos),
 interval(1 <= Pos <= 3),
 adjacent(P,H1,H2),
 helix(P,H2).

“The protein P has fold class 'Four-helical up-and-down bundle' if it contains a long helix H1 at a secondary structure position between 1 and 3 and H1 is followed by a second helix H2”.
Protein structure classification

• Protein structure largely driven by careful inspection of experimental data by human experts

• Rapid production of protein structures from structural-genomics projects

• Machine-learning strategy that automatically determines structural principles describing 45 classes of fold

• Rules learnt were both statistically significant and meaningful to protein experts

A. Cootes, S.H. Muggleton, and M.J.E. Sternberg
available at http://www.doc.ic.ac.uk/~shm/jnl.html
Immunoglobulin:--

Has antiparallel sheets B and C; B has 3 strands, topology 123; C has 4 strands, topology 2134.

TIM barrel:--

Has between 5 and 9 helices; Has a parallel sheet of 8 strands.

SH3:--

Has an antiparallel sheet B. C and D are the 1st and 4th strands in the sheet B respectively. C and D are the end strands of B and are 4.360 (+/- 2.18) angstroms apart. D contains a proline in the c-terminal end.
Closed-loop Learning

Functional genomic hypothesis generation and experimentation by a robot scientist

Science 2009

Nature 2004
Inductive Programming

Inductive Programming

Flash Fill: An Excel 2013 feature that automates repetitive string transformations using examples. Once the user performs one instance of the desired transformation (row 2, col. B) and proceeds to transforming another instance (row 3, col. B), Flash Fill learns a program

\[
\text{Concatenate} (\text{ToLower} (\text{Substring}(v, \text{WordToken}, 1))) \\text{, ToLower} (\text{SubString}(v, \text{WordToken}, 2)))
\]

that extracts the first two words in input string \(v\) (col. A), converts them to lower case, and concatenates them separated by a space character.

Summary

- can be viewed as an extended approach to rule learning
- BUT: much more ...
- learning in a general-purpose programming language
- use of rich background knowledge
- incorporate arbitrary program elements into clauses (rules)
- background knowledge can grow as a result of learning
- control search with declarative bias
- learning probabilistic logic programs